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Abstract

What do humans do when confronted with a common chal-
lenge: we know where we want to go but we are not yet sure
the best way to get there, or even if we can. This is the prob-
lem posed to agents during spatial navigation and pathfind-
ing, and its solution may give us insights into the more ab-
stract domain of planning in general. In this work, we model
pathfinding behavior in a continuous, explicitly exploratory
paradigm. In our task, participants (and agents) must coor-
dinate both visual exploration and navigation within a par-
tially observable environment. In this work, we analyze be-
havioral data from 81 human participants in a novel pathfind-
ing paradigm conducted as an online experiment. We then
propose a model of prospective mental simulation as parti-
cle filtering, coupled with an attention mechanism inspired
by active inference. Lastly, we share an instantiation of this
proposal in a computational agent. Our model, Active Dy-
namical Prospection, demonstrates similar patterns of map
solution rate, path selection, and trial duration, as well as at-
tentional behavior (at both aggregate and individual levels)
when compared with data from human participants. We also
find that both distal attention and delay prior to first move
(both potential correlates of prospective simulation) are pre-
dictive of task performance.

Introduction
Unlike single-celled organisms that can achieve adaptive
success by responding reflexively to immediate changes in
the local environment, humans, and likely a range of other
animals (Gerrans and Sander, 2014), hold the capacity (and
sometimes responsibility) of prospection: to foresee multi-
ple plausible futures, and harvest information from them to
guide action in the present. In an uncertain and constantly
changing world, this is no small task.

How do we respond, for example, when confronted with a
common challenge: we know where we want to go (perhaps
we can even see our destination already), but we are not yet
sure the best way to get there, or even if we can. This is
the problem posed to agents during spatial navigation and
pathfinding, and its solution may give us insights that ex-
tend into the more abstract domain of planning in general.
Indeed, a wide array of human activities (from those that oc-
cur within seconds, to those that span years) can be framed

as a filtering problem: how can we identify a subset of the
infinite possible trajectories through the future that are most
likely to take us somewhere we’d like to go? And further,
how can we explore and evaluate these candidate paths be-
fore experiencing them directly?

In this work, we aim to analyze and model pathfinding
behavior in a task paradigm that is more continuous and dy-
namic than those historically chosen by the planning litera-
ture. In our task, participants (and agents) must coordinate
both visual exploration and navigation within a partially ob-
servable environment in which the dynamics of movement
result in ongoing uncertainty about the true passability of
potential paths.

This contribution has three primary components: 1) an
analysis of behavioral data from a novel pathfinding task
conducted as an online experiment, 2) a proposal to model
mental simulation during navigation as particle filtering, and
3) an instantiation of this proposal in an agent capable of
solving the task in ways that share attributes with human
performance.

By developing a computational model of active percep-
tion, simulation and movement during our pathfinding task,
and comparing results with human behavioral data, we hope
to shed light on the following questions:

• How are simulations of potential future actions coordi-
nated during pathfinding and navigation?

• Which path characteristics attract attention and forward
simulation?

• What are the distributional and temporal dynamics of at-
tention, and how do they relate with pathfinding perfor-
mance?

• Can a common computational mechanism successfully
drive the coordination of both visual attention and navi-
gation?

Background & Related Models
Situated Planning An extensive literature exists around
planning across cognitive science, psychology, neuro-
science, and artificial intelligence. Often, planning problems
are posed in line with classical problem solving, in which the

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/85/1930020/isal_a_00419.pdf by U
C

 BER
KELEY user on 24 June 2022



environment is fully observed with known dynamics (e.g.
formalized as a Markov Decision Process), and solution en-
tails identifying a sequence of actions resulting in a goal
condition (Newell et al., 1972). In reinforcement learning,
Monte Carlo methods are frequently used to sample trajec-
tories during value estimation, and therefore to support the
planning of future actions. Silver and Veness (2010) pro-
posed Partially Observable Monte Carlo Planning (POMCP)
to make value estimation tractable in high dimensional state
spaces. In this work, particle filtering is used to efficiently
approximate belief state updates when access to the true gen-
erative process is not available.

In embodied planning, agents are situated within com-
plex, noisy, and uncertain environments in which, impor-
tantly, they must control both sensors and other motor out-
puts while simultaneously planning future actions in an on-
line fashion. Though common for some time in robotics, ef-
forts to develop theories of realistic embodied planning have
recently gained momentum, propelled by multidisciplinary
contributions from dynamical systems, ecological psychol-
ogy, and reinforcement learning.

To select just a few examples, Cos et al. (2021) demon-
strated that perturbations to the arm during a reaching task
can prompt changes of mind, indicating that deliberation
continues dynamically during action execution. Pezzulo
et al. (2019) proposed a connection between specific neural
dynamics (sharp-wave ripples and theta sequences) as mech-
anisms to support planning in two regimes: at decision time,
and in the background to optimize a behavioral controller. In
a foraging paradigm, Yoon et al. (2018) developed a model
of normative utility based on the marginal value theorem,
and applied it to a visual information harvesting experiment
in which fixation duration (time spent at a patch) and sac-
cade speed (movement vigor between patches) were mea-
sured. Their findings suggest a shared principle of control
may underlie both aspects of foraging behavior.

Navigation, Simulation & Prospection According to
Montello (2005), navigation can be decomposed into two
components: 1) locomotion, in which the body is coordi-
nated to its local surrounds, and 2) wayfinding, in which a
goal-directed agent plans actions aided by memory of both
the local and distal environment. Though a range of neuro-
scientific mechanisms have been proposed to support both
components (e.g. cells in the hippocampal formation encod-
ing position, orientation, and head direction, among oth-
ers), the dynamics by which internal models of the environ-
ment are queried offline (via simulation) and integrated with
present sensory information (e.g. the observation of land-
marks), is not well understood.

Mental simulation, often also referred to as replay or pre-
play, is the generation of internal sequences reflecting pre-
vious or possible engagements with the world. In a psy-
chophysics experiment, Arnold et al. (2016) showed that

humans adaptively compress simulations of potential routes
during prospective route planning. Chersi et al. (2013) de-
veloped a computational model of simulated and overt ac-
tion during maze navigation, involving the hippocampus and
striatum to support recall and cache action values respec-
tively.

Especially important to the present work, is active infer-
ence, which has been proposed as a suitable formal theory
to support the project of embodied perception, action, and
planning (Friston et al., 2017). In active inference, agents
act to reduce prediction error (free energy) produced from
inconsistencies between an internal generative model and
sensory observations. Recent work has applied the theory
to planning and navigation, running simulations of naviga-
tion in a maze environment (Kaplan and Friston, 2018).

Finlly, the literature on active navigation has investigated
the relationship between sensory exploration and pathfind-
ing. In a recent study, Lakshminarasimhan et al. (2020)
showed that eye movements could be used to infer latent
beliefs such as the location of a hidden goal during virtual
spatial navigation, and that controlling fixations had detri-
mental effects on navigation performance.

Swarm Intelligence Our model also draws inspiration
from Trianni and Tuci (2009), who argued that the integra-
tion of artificial life and cognitive science via “swarm cog-
nition” could offer fruitful progress in understanding and
modeling cognitive mechanisms. Swarm intelligence has
demonstrated that simple unit-level behaviors (such as in-
dividual particle dynamics), when operating as a collective
system, can produce complex emergent properties. In some
cases, such as that of ant colony optimization, these system-
level properties offer strategies effective at even NP-hard
problems, such as the traveling salesman (Colorni et al.,
1991).

Online Pathfinding Experiment
Our task was designed to require participants to explicitly
coordinate visual attention and navigation to a goal. On each
trial, participants saw their present location (at the center of
the screen), as well as the locations of one or more goals.
A landscape of 50 ‘holds’ was initially hidden, and exposed
when the particpant moved their cursor across the landscape,
exploring the map in a spotlight-like manner1. Holds were

1While artificial attention collected in this way cannot be con-
sidered equivalent to eye-tracking metrics, this cursor-controlled
spotlight method of capturing spatial attention in online experi-
ments has been explored in other work. In particular, a validation
study was performed by the authors of MouseView.js, a JavaScript
library supporting experiments of this kind, and finding that pat-
terns of dwell time were similar to those collected with the same
stimuli in an eye-tracking experiment (Anwyl-Irvine et al., 2021).
Note that this study uses its own implementation of the cursor spot-
light method since MouseView.js was released publicly after com-
pletion of data collection.
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Figure 1: Sample map (map 5) with hold connectivity plot-
ted as edges (lighter edges indicate gaps closer to reach
limit). Optimal path to goal is plotted in green. The trans-
parent blue circle indicates the reach radius, at the center of
which, the small blue ring indicates the reach target at the
agent’s present location. Note that during a trial, the edges
shown were not visible to the participant, and holds were
only visible when near the cursor. Goal holds (green circles)
were visible at all times.

reachable only when within the ‘reach zone’, a fixed radius
of the participant’s present position indicated by a blue cir-
cle (as shown in Figure 1). To navigate to a reachable hold,
the participant dragged it toward the small central target in-
dicating their present location. During a successful drag, the
full landscape shifted such that the chosen hold became cen-
tered within the egocentric space. In this way the participant
was able to navigate towards and eventually reach a chosen
goal.

By designing the task in this partially observable, ego-
centric manner, we were able to capture both movement and
attention independently, and ensure that computational mod-
els of behavior in this paradigm contend with the richness of
online sensorimotor exploration.

Participants

Study participants were recruited through an on-campus ex-
perimental lab at a public university in the United States.

81 participants completed the online study. Participants
had a mean age of 22 ± 2.1. 61 identified themselves as
women, 18 as men, 1 as non-binary or non-conforming, and
1 declined to answer. 56 reported their race as Asian, 13
white, 1 Black or African American, 1 American Indian or
Alaska Native, and 7 Other, including White and Asian (2)
and Middle Eastern (2). 9 participants identified as Span-
ish, Hispanic, or Latino. All participants were undergradu-
ate students, graduate students or staff at the University of
California, Berkeley.

Figure 2: Plot of attention across all human participants
(map 3). Red points indicate attention within reach zone.
Blue points indicate attention beyond reach zone, a proxy
for exploration.

Procedure
The experiment began with a series of instructions about the
task. Participants completed a practice trial where they were
guided through a trivial landscape to a nearby goal location
to ensure they understood the mechanics of navigation and
the trial objective. The full experiment entailed completing
each of 11 predefined maps in randomized order. Each trial
ended when a goal was reached, or when a 60-second trial
timer expired. As an attention check, sessions were termi-
nated early after 30 seconds of inactivity (the absence of any
cursor movement). Pariticipants received a base incentive
of $6, and a performance bonus of $0, $2, or $4 depending
on final score as a percent of maximum (less than 60%, 60-
80%, or more than 80%). The recruitment process and study
protocol were approved by the local ethics review board.

Data Structure
Two types of data were captured during each trial: navi-
gation data, and ‘attention’ data. Navigation data included
each attempt to navigate to a hold in the landscape, whether
successful or unsuccessful, resulting in a final path through
the landscape represented as a list of holds and timestamps.
Attention data was recorded as a stream of 2D cursor coor-
dinates (x, y) captured at 30 Hz.

Videos rendering all participants’ navigation and attention
data for all maps are available on the first author’s website 2.

Behavioral Data Analysis
To compare performance metrics with map difficulty, and
given the small number of maps in our dataset, we elected to
define three difficulty categories (low, medium, and high-
difficulty maps) based on the sample-wide success rate
across all participants. In addition, we extracted a number

2All media is available at: https://jgordon.io/
project/adp
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of behavioral metrics from the raw navigation and attention
data.

Prospection and Spatial Exploration By exploiting one
feature of the task design—that cursor coordinates farther
from the origin indicate visual exploration of more distant,
not presently reachable, holds—we defined a key metric,
attention distance, as the Euclidean distance of the cursor
(“fovea”) position from the agent (at screen center). Fur-
thermore, by segmenting attentional coordinates as shown in
Figure 2 into reachable (red) and unreachable (blue) groups,
spatial patterns relating to map exploration could be directly
visualized.

Trial Score In order to compare the computed behavioral
metrics to an indication of both trial-level and participant-
level performance, we define the score σij for participant i
and map j via the function:

σij = f(pathij ,mapj) =

{
0 if success = 0
λmin

λpp
if success = 1

Here, λpp was computed as the number of successful
moves completed by the participant, and λmin was a map-
specific property defined as the minimum-length path to
(any) goal. As such, σij ∈ [0, 1].

Computational Model
Model Rationale
We propose Active Dynamical Prospection (ADP), a model
of planning related to active inference and augmented by
ideas from swarm intelligence and dynamical systems. Fol-
lowing active inference, we assume that mental simulation
may be leveraged to simultaneously learn, and plan within,
a generative model of the agent’s environment.

Our computational model is guided by the following cen-
tral hypothesis: that covert mental simulations supporting
this task may be fruitfully modeled as Monte Carlo particle
filtering3 across a learned energy landscape, and subject to
a set of precise physical dynamics aligned with the interac-
tion capabilities of the agent within its environment. While
Tschantz et al. (2020) discusses the use of trajectory sam-
pling to learn the generative density in active inference, what
we propose is a stronger commitment to particle filtering as a

3Particle filters are a statistical technique named initially by
Del Moral (1996) for the modeling of fluid mechanics, but applied
to a wide range of domains, with their use in Bayesian inference
and Hidden Markov Models most relevant to the present work. Par-
ticles represent samples from a posterior distribution over hidden
states of a process, given noisy observations. By sequentially ap-
plying dynamics to each sample, trajectories (rollouts) can be gen-
erated which approximate changes to the density (belief state) over
time.

Figure 3: Energy landscape schematic (profile and top-down
view of sample map region). Particle trajectories are in-
fluenced by an energy well (darker blue) in the landscape
around the goal location. The path shown passes through
the high energy location under the fovea (yellow) only be-
cause of the hold observed there.

descriptive model of simulation with possible links to covert
attention.

We view pathfinding as prospective inference, or the act
of reducing uncertainty over the ultimate trajectory an agent
will take through its environment. In our model, the agent
learns a representation of the movement affordances in its
environment, which can be thought of as a 2-dimensional
energy surface. Given initial visual access only to its own
location and that of the goal(s), agents begin with a sensible,
but naı̈ve, prior form for this surface, which we model as
distance to nearest goal (see the gradient surrounding the
goal in Figure 3b).

Agents leverage a set of three tools to uncover the true
topology of their environment: 1) overt visual search by
moving the fovea to expose hold locations, 2) navigating, by
attempting to grab a nearby hold, which may be used both to
confirm the true reachability, as well as to traverse the envi-
ronment, and 3) simulated trajectories, modeled by particle
filtering (Sequential Monte Carlo rollouts) over the present
surface. The first two tools are specified by the task, and the
third is the central mechanism of ADP.
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Visual Search As the fovea is moved across the map, pre-
cise visual information about the location (or absence of)
holds is integrated into the energy surface. Specifically, re-
gions absent of any hold are set to high energy values (indi-
cating a vanishing probability the final path will land in this
area), while the energy around regions where holds are dis-
covered is reduced. However, the locations of holds them-
selves aren’t sufficient to infer path passability, since one
hold must be reachable from the other to allow traversal.

Dynamical prospection supports this function.

Dynamical Prospection To support the learning of an en-
ergy surface suitable for navigation, we model prospec-
tion as parallel stochastic simulations of possible trajectories
from the agent’s present location. Particle dynamics sam-
ple a successor location from the present energy landscape,
making hops to lower energy regions (where the agent al-
ready believes its path is likely to fall) more likely.

Rollouts—sequentially sampled trajectories—run in a la-
tent world model, allowing simulation of paths that are not
currently in the field of view. However, uncertainty about
the locations and accessibility of holds in the model results
in sampling variance and constraints to trajectory distance.

Central to ADP is the idea that simulated particle trajec-
tories are most useful to an agent when governed by dy-
namics reflecting the agent-environment system’s character-
istics of interaction—both transition dynamics, and goal-
seeking preferences. Specifically, we model particles with
constraints imposed by a simple intuitive physics: momen-
tum and a distance-aware sample filter. Particle momentum
reduces most quickly when moving up an energy gradient,
and more slowly when descending, resulting in longer roll-
outs during descent. The sample filter limits consideration
for a particle’s successor location to an approximate reach-
length radius, thus ensuring particle dynamics parallel the
agent’s own ability to traverse the landscape.

The sampled trajectories are sufficient to determine three
effects which control the agent’s internal representation and
behavior:

1. Particles update the underlying energy at each sampled
location, as a function of their terminal energy.

2. Because the agent expects to move through a low energy
path, trajectories passing through high energy areas pro-
duce prediction errors. The location of these errors are
used to attract visual attention (moves of the fovea), which
generate observations to resolve this ambiguity.

3. The direction of the first step of each rollout determines
confidence in the next (navigational) move. When direc-
tional variance drops below a threshold (parameterizing
greediness), the agent attempts to reach in the consensus
direction.

We hypothesized that, together, our agent model (ADP-
Agent) would exhibit behaviors useful to solving the

pathfinding task such as: greedy exploration of direct paths
to goal, focusing visual search on optimistic but still am-
biguous candidate path locations, and dynamic planning
demonstrated by iterative use of visual search and hold
traversal. Altogether, we expected the proposed model to
be capable of solving maps with similar difficulty to those
solvable by humans. A detailed description of the model
implementation follows.

Model Details
Agent Task Paradigm The agent task paradigm was mod-
eled to maximize consistency with the problem posed to hu-
man participants, while abstracting away low-level motor
dynamics like controlling a cursor during click and drag.

Agent state is a tuple (Xagent, Xfovea, E), where
Xagent ∈ R2 is the agent’s location in the map, Xfovea ∈
R2 is the agent’s fovea location (which determines the posi-
tion of the spotlight), and E is the internal model of the map
as an energy landscape.

On each time step, the agent receives an observation from
the local area around its fovea, which includes the positions
of all holds in the map within a fixed foveal radius. The
agent then chooses an action, composed of the next posi-
tion for both the agent and the fovea: At = (Xagent(t +
1), Xfovea(t + 1)). The agent need not move itself nor its
fovea on every time step. The environment updates in re-
sponse to the chosen action by 1) moving the agent location
toXagent(t+1) if this location is reachable (distance within
reach radius), and 2) moving the fovea toXfovea(t+1), tak-
ing multiple steps if fovea distance is greater than the max-
imum fovea velocity. If the agent’s new position lies within
a goal, the trial is completed successfully.

ADP-Agent ADP-Agent is instantiated with an energy
landscape represented as a 2D matrix or rasterEW×H where
each exy ∈ [0, 1] represents the energy at that point in the
landscape. W and H are parameters specifying the resolu-
tion of the agent’s energy landscape. We separately define
a distance-based energy floor, Efloor, calculated as the Eu-
clidean distance to the closest goal location. E is initialized
to E(t0) = Efloor + C where C is a constant.

We define the following additional parameters influencing
various aspects of agent behavior:

• k: Number of particles to emit per step
• τ : Softmax temperature for particle location sampling
• Particle mass m: Inverse of rate at which we reduce par-

ticle momentum during rollout
• α: Learning rate for energy updates
• Move consensus threshold η: Percentage of first particle

steps landing on the same hold required to attempt a move
• d: Energy decay rate (towards initial initial energy E(t0))
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On each time step, ADP-Agent performs k particle
rollouts, instantiating each at the agent’s present location
Xagent

4. Rollouts are computed by considering only loca-
tions in the energy landscape within an approximate reach
radius from the location of the particle (for convenience, we
implement this as a circular binary mask centered at position
X , with radius r: Mask(X, r)), resulting in a candidate
subset of the landscape Ec. Particle dynamics then follow a
softmax, such that the next location is sampled as:

Xp,j+1 ∼ p(Xp,j+1|Xp,j , E) =
exp(−Ec/τ)∑
i exp(−Ec,i/τ)

(1)

Particles lose momentum as a function of the change
in energy of the landscape: pj,mnt ←− pj−1,mnt −
E[Xp,j ]−E[Xp,j−1]

m , and dampened by the particle mass pa-
rameter, m. The rollout continues until the particle’s mo-
mentum falls to 0 or below.

Learning After each particle i terminates, the energy
landscape is updated underneath each step of its trajectory
πi = {Xi0, Xi1, ..., Xin} by an approximate momentum-
discounted learning rule based on the difference between the
energy at each step E[Xij ], and that at the terminal location
of the rollout E[Xin].

E ←− E + αpij,mnt(E[Xn]− E[Mask(Xij)]) (2)

This learning update serves to push the landscape energy
towards the terminal energy as illustrated in Figure 3.

Following all rollouts and updates, the landscape is multi-
plicatively decayed (by rate d) towards its initial conditions,
and clipped to the interval [Efloor, 1] after each step:

E ←− clip(E + d(E(t0)− E), Efloor, 1) (3)

To choose a new location for the fovea, an error map Ψ
is computed by summing the energy under every particle
trajectory step. In this way, areas of high surprise (parti-
cle trajectories moving through high energy regions) can be
efficiently calculated as a direct result of the rollout compu-
tation.

Xfovea(t+ 1) = arg max
X

∑
Ψ[Mask(X)] (4)

The second component of action, Xagent(t + 1), is de-
termined based on the uncertainty (entropy) of first step

4Alternative strategies were also explored, including sampling
an origin from the landscape, or alternating between the fovea loca-
tion and the agent. The agent-origination strategy was most robust
in our simulations.

Figure 4: Regressions of trial-wise score versus mean atten-
tion distance in human trials. An increasingly strong posi-
tive correlation is seen as map difficulty increases. Lines of
best fit, Pearson-r and p-value from each OLS regression are
shown.

directions over all trajectories. We define the set of first
step directions (for a particle batch) as Θ = {θi}ki=1 where

θi = arctan(
piy,1−p

i
y,0

pix,1−pix,0
). We then calculate the variance,

and if V ar(Θ) < η, the agent attempts to reach the hold
upon which the plurality of its first steps (px,1, py,1) fall.

Videos of sample agent runs can be found at the me-
dia page linked in the ‘Data Structure’ section above, and
Python code is available as a public repository.

Results
Online (Human) Experiment Results
Prospection via Attention Distance We investigated both
distributional and temporal characteristics of attention dis-
tance. At the trial level, we found a positive correlation be-
tween the mean of attention distance and score across all
three difficulty levels. This relationship is statistically sig-
nificant for medium and high-difficulty maps, but not for
low-difficulty maps (see Figure 4 for details and OLS re-
gression results).

To identify patterns in temporal attention data, we com-
puted maximum attention distance binned based on progress
through trial, which allowed us to standardize longitudinal
data across trials of varying duration. As shown in Figure
6, we found a general trend of reducing distance as trials
progress, as well as a positive relationship between distance
and map difficulty. The downward trend was shallowest for
the lowest-performing participant segment.

As another perspective on prospective and exploratory be-
havior, we analyzed the delay prior to first move. We found
that on trials with longer delays (wherein participants ex-
plored the landscape for longer prior to navigating to their
first hold) success rate overall was lower (see Figure 5).
However, when looking only at successful trials, we found
a statistically significant association between delay and trial
score.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/85/1930020/isal_a_00419.pdf by U
C

 BER
KELEY user on 24 June 2022



Figure 5: Left: Trial-wise success versus delay before first
move (in seconds). Right: Regression of trial score versus
delay, among successful trials.

Figure 6: Binned longitudinal max attention distance across
map difficulty (green, orange, and red line series indicat-
ing low, medium and high difficulty), and participant perfor-
mance groups (left, middle, and right charts). We observe
consistent declining trends across each trial duration as ex-
ploration reduces during navigation (exploitation).

Simulation Results
Simulations were run using the same maps and task con-
straints as those used in the online experiment. 81 simu-
lations were run on each map, with identically instantiated
agents. We compared four primary outputs of simulation
runs with the results from our online experiment: success
rate, as well as the distributions of goal reached (for maps
with multiple reachable goals), distribution, and spatial at-
tention.

Our results show that all maps can be successfully solved
by ADP-Agent, and that success rates are well correlated
with that of human participants (see Figure 7). While some
maps showed similar goal preferences, indicating related
goal choice dynamics, a minority showed inversed prefer-
ences (e.g. maps 2 & 11). Trial duration was also highly
correlated (Pearson-r = 0.81, p < 0.005). In aggregate,
spatial attention exhibits visual similarities in its patterns of
exploration and navigation. As an example, see the heatmap
comparison at left in Figure 8, which shows both humans

Figure 7: Comparison of human and agent success rates
(left) and trial durations (right) across all maps.

Figure 8: Human vs. agent comparison (map 7). Left: aggre-
gate attention outputs from all runs. Top right: goal reached
success rate. Bottom right: run duration distribution. Agent
simulations solved map 7 more quickly (in simulated time),
and more consistently than humans.

and agents exploring a dead end south of the starting posi-
tion, before identifying a connected path to goal).

Discussion
Our behavioral results showing an increasingly significant
correlation between mean attention distance and trial-wise
score can be interpreted as the value of exploratory distal at-
tention. Though weaker for low difficulty maps, which we
might expect since a greedy no-look-ahead policy was still
effective in these cases, participants (and agents) could eas-
ily get stuck in dead ends if they didn’t confirm connectivity
prior to movement down a path.

The temporal trend seen in attention distance, as well as
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the relationship between first move delay and score, suggest
that participants had to balance visual exploration with nav-
igation in order to succeed at our task. With failed trials fil-
tered out (as was done for the delay versus score regression
in Figure 5), score can be seen as a proxy for path efficiency.
While participants spending too long exploring prior to navi-
gation were less likely to succeed (within the 60-second time
limit), for those who were successful, exploratory behavior
prior to committing to a spatial direction was predictive of
path efficiency.

In the following sections we discuss simulation results
and their comparison with human behavioral data. While
quantitative comparisons of path choice, trial duration, and
success rate offer some validation that simulated agents gen-
erate attributes that are, in aggregate, consistent with human
planners, we can also derive insights from qualitative analy-
sis of behaviors seen in single simulation runs.

Epistemic Value via Prospection As particles move
through previously observed terrain (across high contrast or
“well-worn” trajectory segments in the landscape), they fol-
low predictable paths. However, when moving into unex-
plored terrain, the sampling dynamics generate splits and
radiating branches guided only loosely by the underlying
distance-based floor. Trajectories venturing into these higher
energy regions produce large areas of prediction error, which
suggest epistemic richness given a combination of high
expected surprisal, and high path salience. ADP-Agent’s
foveal policy, which moves attention to the area contain-
ing maximum prediction error on the prior time step, there-
fore serves to expand the peripheries of the known landscape
where it is most likely to yield paths to a goal.

We also find dynamics in which particles “jump off” a
path of observed holds influenced by an energy well from
a nearby goal—even when these jumps take particles into
unobserved regions. These trajectories might be thought of
as optimistic shortcuts, and the high prediction errors they
produce attracts visual attention to confirm or deny the hy-
pothesis of path connectivity.

Attention & Surprise A feature shared by human and
agent attention is a focus on holds that are close to the
reach limit, but not in fact reachable. Though distal scans
of these connections may be assessed as passable (by hu-
mans, as well as by optimistic particle trajectories), upon ar-
riving at the hold, a failed reach attempt prompts subsequent
attempts, or consideration of alternative nearby paths.

Other map attributes that are seen to attract attention
across both simulations and behavioral data are symmetri-
cal forks (in which two holds appear to lie on similarly di-
rect paths to goal), and other regions of uncertainty caused
by competing candidate trajectories. ADP-Agent fixates on
these regions during increasingly long rollouts until a confi-

dence threshold is reached5. In general, our model appears
to leverage the parallelized nature of prospective simula-
tions, with serially executed attentional movements support-
ing uncertainty reduction at the areas of highest error.

Search Depth & Backtracking A common challenge in
complex planning problems is the optimization of search
depth, to avoid actions leading to dead ends. Backtracking
was common in both human and agent simulations, espe-
cially in high difficulty maps including direct but ultimately
disconnected paths. Forward search depth is modulated by
ADP-Agent’s particle mass and move consensus threshold
parameters, which affect the length of trajectories, and navi-
gational greediness, respectively. Empirical optimization of
these parameters to a specific map (via grid search) was usu-
ally sufficient to achieve 100% success rate on even the most
challenging problems.

Limitations & Future Work
The model presented here lacks several features inherent to
human pathfinding that may limit its ability to predict and
explain behavior. First, ADP-Agent is unable to generalize
or treat clusters of holds or path segments as more abstract
units. For example, while human participants likely perceive
a sequence of closely positioned holds as a single passable
route affording traversal from start to end, the landscape in
our model independently represents an energy well around
each hold. Secondly, some human attentional data appeared
consistent with bi-directional planning (a well-known di-
mensionality reduction strategy long studied in psychology
and artificial intelligence, e.g. Pohl (1971)), especially when
confronted with challenging problems. In contrast, ADP-
Agent’s attention was seen to progress roughly monotoni-
cally towards goal locations driven by errors on the periph-
ery of the observed landscape. Experimenting with particle
emissions strategies that support inverse rollouts from goal
locations may begin to address this limitation.

In this study, agent parameters were selected empirically
based on a trivial success rate criterion. This was done to
avoid overfitting to human behavior, and therefore making
it difficult to meaningfully analyze similarity. An alternative
path for future work, however, is to fit parameters to individ-
ual participant data, and seek correlations between parame-
ter values and trial performance, as well as other individual
characteristics such as spatial reasoning, working memory
capacity and risk aversion.

Conclusion
In this work, we propose a computational model of visual
exploration and control during pathfinding in a partially ob-
servable and uncertain environment. Behavioral data from

5This is a dynamic consistent with theories of evidence accu-
mulation, e.g. Lee and Cummins (2004).
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our online experiment provides further insight into the range
of strategies employed by humans in this task. Results from
simulations show that agents can successfully solve the task
by minimizing prediction error generated from particle roll-
outs across a learned energy landscape. Quantitative and
qualitative similarities seen between human behavior and
simulation results encourage further exploration of particle-
based models of mental simulation.
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